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A B S T R A C T   

Production of 5-hydroxymethylfurfural (HMF) from biomass-derived glucose has great potential for synthesis of 
renewable fuels and chemicals. Selective glucose conversion to 5-hydroxymethylfurfural requires a balance 
between Lewis and Brønsted acids for the cascade of glucose isomerization followed by fructose dehydration. A 
dual Brønsted-Lewis acid, phosphotungstic acid encapsulated MIL-101(Al)–NH2 metal–organic frameworks 
(MOFs) was developed to catalyze the glucose dehydration reaction. The encapsulated catalysts had a high HMF 
selectivity of 58% at 44% glucose conversion at 120 ◦C in [C4C1im]Cl. Phosphotungstic acid was uniformly 
dispersed in the MOF pores, which provided both Brønsted and Lewis acid sites for this cascade reaction. The 
Brønsted acidic phosphotungstic acid-encapsulated MOF catalyst was stable and recyclable at least four times. 
These findings explain the effect of phosphotungstic acid location for maximizing the HMF selectivity and 
suggest a new approach for the design of bifunctional solid acid catalysts for selective HMF production from 
glucose. Moreover, the tunability of the acid properties of the encapsulated MOF catalysts provides opportunities 
for other biomass transformations.   

1. Introduction 

Negative consequences of fuel and chemical production from pe
troleum, especially sizeable greenhouse gas emissions, price volatility 
[1], and non-renewability [2], have propelled the production of com
modity chemicals from renewable plant biomass. Hydrox
ymethylfurfural (HMF) is a versatile platform chemical derived from 
biomass with potential applications for fuels, chemicals, plastics, and 
pharmaceuticals [3-5]. The challenge of glucose dehydration to HMF is 

to obtain high HMF selectivity. Although the glucose dehydration re
action has been studied extensively, its mechanism is still being debated 
[6,7]. 

In general, glucose dehydration to HMF can occur by two chemical 
pathways (Scheme 1), direct dehydration (path 1) and tandem 
isomerization-dehydration reactions (path 2). The direct dehydration of 
glucose to HMF by Brønsted acid catalysts is slow, and HMF selectivity is 
low because of side reactions such as cross-condensation with formation 
of undesired humins [8-11]. Tandem isomerization-dehydration 
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reactions in one-pot afford opportunities to transform glucose to HMF 
selectively [12]. Selective production of HMF from glucose requires 
cooperation between Lewis and Brønsted acid catalysts for glucose 
isomerization to fructose and subsequent fructose dehydration to HMF 
[8,13-15]. Lewis acid promotes the isomerization of glucose to fructose 
and then dehydration of fructose to HMF by Brønsted acid [16-18]. 

Swift et al. demonstrated this concept of tandem isomerization- 
dehydration reactions by incorporating a Lewis acid (CrCl3) with a 
Brønsted acid (HCl) catalyst, an approach that enhanced both catalytic 
activity for glucose dehydration and HMF selectivity [19]. Vieira et al. 
used the combination of Lewis acid Nb2O5 and Bronsted acid HCl in a 
water/tetrahydrofuran (THF) biphasic system. They found that the 
Brønsted acid HCl was necessary to improve HMF selectivity from 7.6% 
to 51% and glucose conversion from 49% to 93%, compared with Nb2O5 
alone [18]. Nikolla et al. used the combination of Sn-containing β-zeolite 
and HCl in H2O/THF biphasic system to reach 72% HMF selectivity at 
79% glucose conversion [20]. However, all these studies were con
ducted with homogeneous Brønsted acid catalysts that complicate 
product purification [21] and catalyst recycling. Therefore, it would be 
most useful to have solid catalysts that possess both Brønsted and Lewis 
acid active sites for selective glucose conversion to HMF. In answer to 
this need, this report describes metal–organic frameworks that have 
both Brønsted and Lewis acid sites for selective glucose conversion to 
HMF. 

Metal-organic frameworks (MOFs) are porous crystalline materials 
that consist of metal ions or clusters coordinated with organic linkers to 
form highly uniform solid networks [22-27]. The coordinated unsatu
rated metal sites (cus) endow MOFs with Lewis acidity [28,29]. Lewis 
acid sites of MOFs have been used to catalyze various reactions, such as 
aldol condensation [30], deacetalization-Knoevenagel condensation 
[31,32], Meinwald rearrangement [33], and CO oxidation [34]. The 
porosity of MOFs enables incorporation of large Brønsted acidic mole
cules to create bifunctional acid catalysts for various acid-catalyzed 
organic reactions [22,23,35-38]. 

Polyoxometalates (POMs) are versatile catalysts because of their 
many active sites [39,40]. The Keggin family of POMs ([XM12O40]n- 

anions (X = Si and P, M = Mo and W) with protons as the only coun
tercations are heteropolyacids; examples include phosphotungstic acid, 
silicotungstic acid, silicomolybdic acid, and phosphomolybdic acid. 
These heteropolyacids have high acid strength and they are less corro
sive compared with ordinary mineral acids (HBr, H2SO4, HNO3, and 
HCl) [41,42]. Although these properties make heteropolyacids attrac
tive in acid-catalyzed reactions [43-47], they are soluble in water and 
many organic solvents. Thus, they are difficult to recycle, and their 
presence complicates purification of soluble products. 

Trapping heteropolyacids in MOF pores generates bifunctional cat
alysts with both Lewis and Brønsted acids, which are important for se
lective glucose conversion to HMF [15,48]. Indeed, as reported in 

Table S1, the Keggin-type heteropolyacids have been encapsulated 
successfully in the pores of MOFs [49-52]. For example, phosphotungstic 
acid (PTA)-encapsulated MIL-101(Cr) was used for various catalytic 
reactions such as the esterification of n-butanol with acetic acid [53], 
dehydration of methanol [53], oxidative desulfurization of dibenzo
thiophene[54], carbohydrate dehydration to 5-hydroxymethylfurfural 
[52], and oxidation of the alkenes [55]. Zhang et al. synthesized 
PTA⊂MIL-101(Cr) by encapsulating PTA in MIL-101(Cr) for sugar 
dehydration [52]. Fructose dehydration by PTA⊂MIL-101(Cr) was se
lective for HMF (77% HMF selectivity at 82% fructose conversion). 
However, PTA⊂MIL-101(Cr) was not selective for HMF in glucose 
dehydration (10% HMF selectivity at 21% glucose conversion). More
over, the use of fructose as a feedstock is not cost-effective because 
glucose is less expensive than fructose [56]. In addition, the chromium 
in PTA⊂MIL-101(Cr) catalysts is harmful to humans, animals, and the 
environment [57]. Therefore, there is a need to develop heterogeneous 
chromium-free acid catalytic systems that possess both Brønsted and 
Lewis acid sites to regulate the HMF selectivity in glucose dehydration. 

Here, this work describes encapsulation of phosphotungstic acid in 
the pores of MIL-101(Al)–NH2 to form PTA⊂MIL-101(Al)–NH2. The ef
fect of PTA encapsulation on catalytic performance in glucose dehy
dration with [C4C1im]Cl as solvent was evaluated. The [C4C1im]Cl was 
selected as the reaction solvent because our previous studies established 
that the alkyl imidazolium chloride ionic liquids, such as [C2C1im]Cl 
and [C4C1im]Cl, can dissolve cellulose and enable hydrolysis of cellulose 
to sugars [58-60]. The MIL-101(Al)–NH2 was selected because it is 
chemically and thermally stable [32]. Moreover, Brønsted acidic PTA 
was used as the heteropolyacid because it has a high acid strength 
compared with other heteropolyacids [61]. The encapsulated PTA in 
MIL-101(Al)–NH2 was uniformly dispersed and stable in MIL-101(Al)- 
NH2 pores, and it provided Brønsted acid sites that rendered the catalyst 
selective for HMF production. These results reveal the unrecognized 
catalytic performance of the PTA⊂MIL-101(Al)–NH2 catalysts for se
lective glucose dehydration. 

2. Materials and methods 

2.1. Materials 

The following chemicals were purchased and used as received: D- 
glucose, 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl), 2-amino
terephthalic acid (2-ATA), aluminum chloride hexahydrate, phospho
tungstic acid (PTA), and N,N-dimethylformamide (DMF), methanol, 
ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, p-dioxane, ethyl 
acetate (EA), N,N-dimethylformamide (DMF), N,N-dimethylacetamide 
(DMA), dimethyl sulfoxide (DMSO), and tetrahydrofuran (THF). 
Table S2 summarizes the list of chemicals/reagents, their supplier, pu
rity, and CAS number. All other chemicals, solvents, and gases were of 

Scheme 1. Reaction network of HMF production (BA = Brønsted acid, LA = Lewis acid).  
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the highest purity available from commercial sources. 

2.2. Synthesis of metal–organic frameworks 

2.2.1. Synthesis of MIL-101(Al)–NH2 
MIL-101(Al)–NH2 was synthesized by the solvothermal method with 

a slight modification [30]. Typically, a mixture of aluminum chloride 
hexahydrate (0.51 g, 2.1 mmol) and 2-aminoterephthalic acid (0.56 g, 
3.1 mmol) in DMF (30 mL) was kept in a Teflon-lined autoclave reactor 
without stirring at 130 ◦C for 72 h. Then the reactor was cooled to 
ambient temperature, and the solids were separated from the solution by 
centrifugation (6000 RPM, 5 min). The solids were washed with DMF 
under sonication for 10 min. Finally, the solid catalysts were washed 
three times with methanol at room temperature followed by washing 
with hot (70 ◦C) methanol for 5 h and dried overnight under vacuum at 
80 ◦C. 

2.2.2. Synthesis of encapsulated PTA in MIL-101(Al)–NH2 (PTA⊂MIL- 
101(Al)–NH2) 

PTA⊂MIL-101(Al)–NH2 was synthesized by incorporating phospho
tungstic acid (PTA) hydrated during the synthesis of MIL-101(Al)–NH2. 
In short, aluminum chloride hexahydrate (0.51 g, 2.1 mmol), 2-amino 
terephthalic acid (0.56 g, 3.1 mmol), and different amounts of PTA 
hydrate (0.1–2.0 g) in DMF (30 mL, ρ = ~0.9 g/mL) were kept in a 
Teflon-lined autoclave reactor without stirring, and the mixture was 
heated at 130 ◦C for 72 h. After cooling to ambient temperature, the 
resulting solids were separated by centrifugation (6000 RPM, 5 min), 
washed with DMF, then washed with hot methanol (70 ◦C), and finally 
washed with acetone, and dried under vacuum at 80 ◦C overnight. 

2.3. Catalyst characterization 

2.3.1. Transmission electron microscopy and energy-dispersive X-ray 
spectroscopy analysis 

The microstructure and elemental distribution of the metal–organic 
frameworks (MOFs) were analyzed using transmission electron micro
scopy (TEM) in a Tecnai F20 (FEI company, OR, USA) microscope 
operating at 200 kV. TEM specimens were prepared by dispersing small 
amounts of catalysts onto Cu grid-supported holey carbon films. For the 
analysis of the microstructure, scanning transmission electron micro
scopy (STEM) images were acquired with a high annular angle dark field 
(HAADF) detector (E.A. Fischione Instruments, Inc., PA, USA) and an 
electron probe of a 1 nm diameter. For the elemental distribution 
analysis, energy-dispersive X-ray spectroscopy (EDS) maps were 
collected using a TEAM EDS (EDAX, Inc., NJ, USA) spectrometer. 

2.3.2. N2 adsorption–desorption 
The N2 adsorption–desorption assay was conducted with a Micro

meritics Tristar (Norcross, GA, USA) instrument. The function of TriStar 
was verified with reference materials (Micromeritics). Prior to the 
measurement, the samples were pretreated with a Micromeritics Flow
Prep with sample degasser (Norcross, GA, USA) at 160 ◦C for 2 h. The 
surface area, SBET, was determined from N2 isotherms using the Bru
nauer–Emmett–Teller equation (BET) at − 196.15 ◦C (77 K) [62,63]. The 
BET model assumes multilayer gas adsorption on the adsorbent’s surface 
and obtains the sample surface area value by determining the monolayer 
volume of adsorbed gas from the isotherm data [64,65]. BET surface 
area was calculated at relative pressures between 0.05 and 0.3. The pore 
volume and size were calculated from the N2 desorption values based on 
the Barrett–Joyner–Halenda (BJH) model [66-68]. The BJH model de
termines the mesopore volume distribution, which accounts for the 
change in adsorbate layer thickness and the liquid condensed in the 
pores [69]. The pore volume was calculated as the uptake (cm3/g) at a 
relative pressure of 0.95. 

2.3.3. Thermogravimetric analysis 
Thermogravimetric analysis (TGA) was performed on an SDT Q600 

TA instrument (New Castle, DE, USA). The TGA profiles were used to 
characterize the thermal stability of MOFs. About 20 mg of sample was 
placed in a cylindrical alumina crucible and heated in static air from 
ambient temperature to 700 ◦C with a nominal heating rate of 10 ◦C/ 
min. The change in weight of MOF samples was used to determine the 
moisture content, decomposition of the linkers, and formation of metal 
oxides. 

2.3.4. Fourier transform infrared spectroscopy 
Infrared spectra of the synthesized catalysts were recorded on a 

JASCO Fourier transform infrared (FTIR) spectrometer (Easton, MD, 
USA), equipped with an attenuated total reflection stage (ATR). Samples 
of about 5 mg were used in each analysis. The sample was scanned in the 
spectral range between 400 and 4000 cm− 1 at a 4 cm− 1 resolution. 
Spectra were collected using a deuterated triglycine sulfate (DTGS) de
tector averaging 256 scans. 

2.3.5. Diffuse reflectance infrared Fourier transform spectroscopy 
Diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) with adsorbed pyridine was performed to characterize acid 
sites; measurements were made with a JASCO FTIR-4700 equipped with 
high temperature DiffuseIR™ cell (PIKE Technology, WI, USA). The 
protocol for the DRIFTS experiments with temperature programmed 
desorption is described elsewhere and used with a slight modification 
[70,71]. In short, MOF samples (~5 mg) were placed in a cylindrical 
alumina crucible and treated in nitrogen gas (50 mL/min) at 150 ◦C for 
30 min unless otherwise noted. After the treatment, the DRIFT spectra of 
MOF catalysts were recorded as the background spectra. The MOF cat
alysts were then saturated with pyridine vapor in the low of N2 gas (50 
mL/min). The adsorbed pyridine was removed by flushing with N2 gas 
(50 mL/min) at 50, 100, or 150 ◦C for 30 min before recording the 
DRIFT spectra. All spectra were recorded with 256 scans between 4000 
and 400 cm− 1 at a 4 cm− 1 resolution using a mercury cadmium telluride 
(MCT) detector cooled with liquid nitrogen. The ratio of Brønsted acid to 
Lewis acid sites (B/L) was calculated from the integrated area of the 
bands (after background subtraction) of adsorbed pyridine at 1067 and 
1030 cm− 1 [72]. 

2.3.6. X-ray diffraction 
X-ray diffraction of MOFs was conducted with a Bruker AXS Model 

D8 Advance A28 diffractometer (Germany) using CuKα radiation in the 
2θ range from 5◦ to 40◦ with 0.02◦/step. Samples of about 200 mg were 
used in each analysis. 

2.3.7. Inductively coupled plasma-optical emission spectroscopy 
Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

measurements were performed using a 100 mg sample dissolved in 10 
mL of nitric acid. Heating was used to ensure that the sample was 
completely dissolved. Once cooled, the sample was further diluted to 25 
mL with double distilled water. Measurements were acquired on a 
Varian 720-ES spectrometer equipped with a seaspray nebulizer and 
cyclonic class spray chamber. Parameters included a sample intake of 1 
mL/min, argon plasma flow rate of 15 L/min, and an auxiliary gas (Ar) 
flow rate of 1.5 L/min. The instrument was calibrated using a certified 
reference materials (CRMs) manufactured by VHG. 

2.4. Dehydration of glucose 

A 50 mg sample of glucose and 1 g [C4C1im]Cl were added to a 25 mL 
pressure tube. The catalyst was loaded with respect to the glucose at a 
glucose:Al molar ratio of 25:1 unless otherwise noted. The pressure tube 
was sealed, stirred at 700 RPM (to minimize mass transfer limitations) 
and kept in an oil bath at 120 ◦C unless otherwise noted. The reaction 
was stopped by quenching in a cold-water bath, followed by adding 
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water (~5 mL) to dissolve the remaining glucose and prevent the so
lidification of ionic liquid. The solution was centrifuged and the residual 
solids were removed. The liquid sample was withdrawn and analyzed for 
changes in glucose and the occurrence of dehydration products. 

2.5. Product analysis and quantification 

The reactants and products were analyzed by a High-Performance 
Liquid Chromatography (HPLC, Agilent Technology, Santa Clara, CA, 
USA) equipped with a refractive index detector (RID) and diode array 
detector (DAD). An Aminex HPX-87H column (300 × 7.8 mm, Bio- 
Rad®, Hercules, CA, USA) was used for reactant and product separation 
at 60 ◦C with 0.6 mL/min of 4 mM H2SO4 as the mobile phase. The 
concentrations of sugars and other products were determined by the 
peak areas from the RID signals. The main HMF product was determined 
by the peak area from the DAD signals at 280 nm. Sugar and reaction 
products were calibrated against certified standards (Absolute Stan
dards, Inc., Hamden, CT, USA). The glucose conversion, product yield, 
and product selectivity were calculated as follows: 

Glucose conversion (%) =
mole of glucose reacted
initial mole of glucose

× 100  

Product yield ​ (%) =
mole of product generated

initial mole of glucose
× 100  

Product selectivity ​ (%) =
Product yield

Glucose conversion
× 100 

To ensure that the determination of glucose conversion and HMF 
selectivity were accurate, control experiments using PTA⊂MIL-101(Al)– 
NH2, ionic liquid, and water were conducted at ambient temperature for 
2 h. The change in glucose and HMF concentrations in the presence of 
MOFs was negligible (see Supplementary Materials and Fig. S1 for detail). 
Moreover, to confirm the formation of HMF, solvent extraction by ethyl 
acetate was used with the reaction solution. The extracted solution was 
analyzed by Agilent gas chromatography-mass spectrometry (GC–MS, 
model 7890A and 5977A, Agilent Technologies, Santa Clara, CA, USA) 
equipped with a DB-1701 column (Agilent Technologies, 30 m × 0.25 
mm id, 0.25 μm) (see Supplementary Materials and Fig. S2 for detail). 

3. Results 

Encapsulating phosphotungstic acid (PTA) in MIL-101(Al)–NH2 (Al- 
MOF) formed encapsulated PTA⊂MIL-101(Al)–NH2 (PTA⊂Al-MOF) 
catalysts. The effect of PTA loading on MOF physicochemical and acid 
properties was investigated. Subsequently, the efficiency of PTA⊂Al- 
MOF catalysis of glucose dehydration was measured by comparing the 

performance of encapsulated PTA catalysts with different PTA loading. 

3.1. Physicochemical properties of the PTA⊂MIL-101(Al)–NH2 catalyst 

To evaluate the physicochemical properties of the encapsulated 
PTA⊂Al-MOF catalysts, first, an N2 adsorption–desorption was per
formed to measure the surface area and pore volume (Fig. S3A). The 
bare Al-MOF exhibited a Type IV isotherm, which suggested that the 
MIL-101(Al)–NH2 catalyst was mesoporous. On the basis of the iso
therms, the MOF total surface area and pore volume were calculated and 
shown in Table 1. As a control, the surface area and pore volume of Al- 
MOF were 1487 m2/g and 0.92 cc/g, similar to reported values [73,74]. 
As expected, an increase in PTA loading decreased both total surface 
area and pore volume, which indicated that the encapsulated PTA 
occupied the pores of the Al-MOF. The average pore diameter of the 
synthesized catalysts was ~ 2.4–2.7 nm, in agreement with reported 
values of 1.6–2.9 nm [32,75]. The critical diameter for D-glucose was ~ 
0.84–0.85 nm [76], which is sufficiently small to enable access to the 
active sites within the MOF structure. 

Next, X-ray diffraction (XRD) was conducted to determine the crys
tallinity of the encapsulated PTA⊂Al-MOF catalysts (Fig. S3B). As a 
control, the X-ray diffractogram of the PTA exhibited unique peaks at 
7.2◦ and 9.0◦, similar to reported values [77]. The consistency between 
the diffractograms of the encapsulated PTA⊂Al-MOF catalysts and bare 
Al-MOF suggested that, during synthesis, the PTA⊂Al-MOF catalysts 
retained the structural integrity of the MIL-101 framework. These PTA 
peaks were not observed in the encapsulated PTA⊂Al-MOF catalysts, 
which suggested that PTA was well dispersed in the pores of Al-MOF 
[77] and/or the PTA clusters in the pentagonal and hexagonal win
dows of Al-MOF were indeed smaller than 1.2–1.6 nm [77-79]. Inter
estingly, the PTA⊂Al-MOF catalysts showed slightly broader XRD peaks 
and a shoulder (~11◦). The peak broadening and occurrence of the 
shoulder was hypothesized to be due to the interaction of the encapsu
lated PTA clusters with the MIL-101 framework, which resulted in 
changes in the symmetry of the clusters in the MOF cages. Previous 
studies using POM-encapsulated MIL-101 MOFs showed similar XRD 
peak broadening [29,30,52,55,80,81]. To measure PTA dispersion in the 
Al-MOF catalyst’s pore structure, the encapsulated 14%PTA⊂Al-MOF 
catalyst was imaged by STEM-HAADF. As a control, the STEM-HAADF 
image and elemental mapping of the bare Al-MOF showed that it was 
highly porous with dispersed Al (Fig. 1A and B). The STEM-HAADF 
image and elemental composition mapping of aluminum (Al) and 
tungsten (W) of the 14%PTA⊂Al-MOF showed a highly porous and 
uniform distribution of W and Al clusters within the Al-MOF catalyst 
(Fig. 1C-F), which confirmed our XRD data which indicated that PTA 
was highly dispersed in the pores of the Al-MOF catalyst. 

To determine the surface functionality of the synthesized catalysts, 

Table 1 
Physicochemical properties of MOFs with varying PTA content.  

Entry PTA loading [g/30 
mL]a 

Catalystb Al [wt. 
%]c 

W [wt. 
%]c 

PTA [wt. 
%]c 

Al/W [mol/ 
mol] 

B/ 
Ld 

SBET [m2/ 
g] 

Total pore volume 
[cm3/g] 

Pore diameter 
(nm) 

1  0.00 MIL-101(Al)-NH2  11.56  –   –  0.37 1487  0.92  2.49 
2  0.10 8%PTA⊂MIL-101 

(Al)-NH2  

9.33  6.2  8.1  10.3  0.53 1375  0.82  2.39 

3  0.25 14%PTA⊂MIL-101 
(Al)-NH2  

9.53  11.03  14.3  5.9  0.78 1276  0.78  2.46 

4  0.50 15%PTA⊂MIL-101 
(Al)-NH2  

9.19  11.51  15.0  5.4  0.96 1061  0.72  2.72 

5  1.00 17%PTA⊂MIL-101 
(Al)-NH2  

9.64  13.00  16.9  5.1  1.04 961  0.59  2.45 

6  2.00 18%PTA⊂MIL-101 
(Al)-NH2  

9.11  13.52  17.5  4.6  1.14 854  0.57  2.69  

a Per 30 mL DMF. 
b Number before catalyst name indicates the wt.% of encapsulated PTA measured by ICP-OES. 
c Composition measured by ICP-OES. 
d B/L indicates Brønsted acid/Lewis acid site ratio from the area integral by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). 
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FTIR was performed on catalysts (Fig. S4). The bare Al-MOF showed 
–NH2 bands. The FTIR spectra of encapsulated PTA⊂Al-MOF catalysts 
contained bands from –NH2 and W=O/W-O-W functionalities, which 
confirmed the encapsulation of PTA (see Supplementary Materialss, 
Fig. S4). 

During synthesis, the PTA loading was varied from 0.1 to 2.0 g in 30 
mL of DMF. To quantify the actual amount of encapsulated PTA, ICP- 
OES was conducted on encapsulated PTA⊂Al-MOF catalysts. As a con
trol, the bare Al-MOF catalyst contained 11.56 wt.% Al, similar to a 
reported value [30]. All the encapsulated PTA⊂Al-MOF catalysts had a 
W/P molar ratio of 12, which was the same as that in PTA (H3PW12O40) 
and which confirmed successful PTA encapsulation [82]. As expected, 
increases in PTA loading during synthesis progressively increased the W 
content and decreased the Al/W molar ratio. Interestingly, a PTA 
loading greater than 0.25 g/30 mL (entry 3) during synthesis did not 
result in a significant increase in encapsulated PTA. These results sug
gested that there was an optimal PTA loading that could occupy the MOF 
pores. 

3.2. Acid properties of the catalysts by diffuse reflectance infrared Fourier 
transform spectroscopy 

Selective glucose conversion to HMF requires a cooperative effect 
between Lewis and Brønsted acid catalysts for the cascade of glucose 
isomerization to fructose followed by fructose dehydration to HMF. 
Hence, it is important to distinguish and quantify the acid sites. To 
characterize the acid sites of the synthesized MOFs, DRIFTS was 

performed with adsorbed pyridine. Pyridine was chosen as an in-situ 
titrant for probing the acid site density of MOFs because of previous 
success in observation of Lewis acid and Brønsted acid sites in MOFs [83- 
85]. To avoid degradation of bare Al-MOF and encapsulated PTA⊂Al- 
MOF catalysts, DRIFTS was performed in a range of 30–150 ◦C according 
to their thermal stability from the TGA result (Fig. S5). After pyridine 
adsorption, the DRIFT spectra of these MOFs demonstrated character
istic bands at 1067, 1051, and 1030 cm− 1 (Fig. 2). The 1067 and 1051 
cm− 1 bands corresponded to the interaction between pyridine and co
ordinated unsaturated metal sites (cus), i.e., Lewis acid sites [85,86]. 
The band at 1030 cm− 1 corresponded to the interaction between pyri
dine and the Brønsted acid sites from encapsulated PTA. Surprisingly, a 
weak band at 1300 cm− 1 in the MIL-101(Al)–NH2 sample was observed, 
which suggested the presence of Brønsted acidity in MOFs. Similarly, 
studies by Herbst et al. [87], Halls et al. [88], Vimont et al. [89], and 
Volkringer et al.[85] showed that MIL-101(Cr), MIL-100(Cr), and MIL- 
100(Al) exhibited Brønsted acidity. The origin of Brønsted acidity in 
MOFs remains the topic of debate. However, its origin was hypothesized 
to come from the water molecules bound to metal sites [85]. Moreover, 
this water coordinated to the metal sites was not easily removed during 
activation of MOFs because a high temperature was required to remove 
the bound water. The high temperature can cause the structural damage 
to the MOFs and cause a loss in catalytic activity (see Supplementary 
Materials and Fig. S6 for detail). 

Next, the Brønsted acid to Lewis acid ratio (B/L) was determined 
using the area integral of these bands (Table 1). An increase in encap
sulated PTA loading increased the intensity of the Brønsted acid band at 

Fig. 1. STEM-HAADF images and corresponding elemental mapping of (A-B) MIL-101(Al)–NH2 and (C-F) 14%PTA⊂MIL-101(Al)–NH2.  
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1030 cm− 1 and increased the B/L ratio of the catalysts. It should be 
noted that an increase in encapsulated PTA within MOFs was not pro
portional to an increase in B/L ratio. The acidic properties of encap
sualted catalysts are difficult to be determined because the interaction 
between encapsulated species and the host support can modify their 
acidic properties. Juan-Alcañiz et al. showed the interaction between 
encapsualted PTA and the MIL-100(Cr) framework decreased Lewis 
acidity [90], which agrees with our finding of an increase in the B/L 
ratio after encapsulating more PTA becasuse of an increase in Brønsted 
acid sites and a decrease in Lewis acid sites. 

3.3. PTA⊂MIL-101(Al)–NH2-catalyzed glucose dehydration to 5- 
hydroxymethylfurfural 

To determine the effect of PTA encapsulation on the catalytic per
formance, glucose dehydration was performed with encapsulated 
PTA⊂MIL-101(Al)–NH2 catalysts (Fig. 3). A glucose:Al molar ratio of 
25:1 was used in all experiments to normalize the Al content in the 
catalysts and compare catalytic performance with different encapsu
lated PTA loadings. As a control, a blank (no added catalyst) did not 
show any HMF production, which suggested that (1) the reaction was 
not autocatalytic, and (2) [C4C1im]Cl could not catalyze glucose 

dehydration. All catalysts were active for glucose dehydration in 
[C4C1im]Cl at 120 ◦C (Fig. 3A). Another control of using PTA as a 
catalyst showed a low HMF selectivity of 13% at 43% glucose conver
sion. Fructose, levulinic acid, or formic acid were not observed as 
products. These results suggested the PTA catalyst was not selective to 
HMF as in previous studies [52]. The bare Al-MOF catalyst appeared to 
be an efficient catalyst for glucose dehydration; however, it was not the 
most selective for HMF. All encapsulated PTA⊂Al-MOF catalysts were 
more selective for HMF than MIL-101(Al)–NH2, which indicated that the 
encapsulated PTA in the pores of the Al-MOF enhanced HMF selectivity 
(Fig. S7). Moreover, HMF selectivity exhibited a volcano-shaped profile 
vs. the Brønsted to Lewis acid site ratio (B/L) (Fig. 4). The optimal B/L of 
0.78 (14%PTA⊂Al-MOF catalyst) maximized the HMF selectivity of 58% 
at 44% glucose conversion at 120 ◦C after 2 h (Fig. 3B). These results 
suggested that cooperativity between Brønsted acidic PTA and Lewis 
acid sites of Al-MOF catalyst enhanced HMF selectivity. 

To determine the importance of encapsulating PTA, a glucose 
dehydration reaction was performed with a physical mix of PTA and 
bare Al-MOF catalyst at the same composition as 14%PTA⊂Al-MOF 
catalyst. HMF selectivity by the physical mix catalyst was 33%, lower 
than that of encapsulated 14%PTA⊂Al-MOF catalysts (58%). These re
sults confirmed the importance of PTA encapsulation in maximizing 
HMF selectivity. Interestingly, the HMF selectivity of the physically 
mixed catalyst converged to that of PTA alone (Fig. 3B). Although the 
Bronsted acid such as PTA catalyzes fructose dehydration to HMF, the 
free PTA molecules in the physical mix can catalyze aldol addition and 
condensation reactions from HMF via 2,5-dioxo-6-hydroxyhexanal [91], 
which resulted in humin formation. Moreover, the free PTA in the 
physical mix has a strong interaction with the surface of MOF, partially 
blocking the channels of MOFs and inhibiting the reactant accessibility 
to active sites [92,93]. This blocking effect is the reason why the HMF 
selectivity of the physical mix was lower than that of encapsulated PTA 
in MOFs [77]. Thus, the physical mix showed a high glucose conversion 
with a poor HMF selectivity, in agreement with the study by Zhang et al. 
[52]. 

To evaluate the stability of PTA in encapsulated PTA⊂MIL-101(Al)– 
NH2 catalysts during the reaction, ICP-OES was performed on spent 
encapsulated 14%PTA⊂MIL-101(Al)–NH2 catalyst (Fig. 3B). The W 
content of the encapsulated 14%PTA⊂MIL-101(Al)–NH2 catalyst 
remained relatively constant (~11 wt.% W), which confirmed the sta
bility of the PTA within the 14%PTA⊂MIL-101(Al)–NH2 catalyst. 

3.4. Solvent effect on the glucose dehydration to 5-hydroxymethylfurfural 

The solvent affects the rate of reaction, product selectivity, and 
product stability [94,95]. A major consideration in catalytic biomass 
conversion is the stability of reactants, intermediates, and product in the 
reaction solvent. To investigate the effect of solvent on the stability of 

Fig. 2. Acid properties of encapsulated PTA⊂Al-MOF catalysts measured by 
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). 

Fig. 3. Catalytic performance of encapsulated 
PTA⊂MIL-101(Al)–NH2 catalysts. (A) Catalyst activity 
for glucose dehydration as a function of time. (B) HMF 
selectivity with the W content of the spent catalysts 
assessed by ICP-OES. Reaction condition: glucose:Al 
molar ratio = 25:1, 50 mg glucose, 1 g [C4C1im]Cl, 
120 ◦C. Phosphotungstic acid (PTA) loading = 14 wt. 
% in PTA alone and physical mix (MIL-101(Al)–NH2 +

14%PTA) to match the PTA in 14%PTA⊂Al-MOF. The 
percent of tungsten (%W) in Fig. 3B indicates the W 
content in the spent catalyst at the specific 
conversion.   
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these molecules, glucose, fructose and HMF were used as reactants in 
various solvents. The 14%PTA⊂Al-MOF was chosen as catalyst because 
it had the greatest HMF selectivity. For glucose, [C4C1im]Cl was the best 
performing solvent as shown by the greatest HMF selectivity at similar 
conversion to other solvents (Fig. 5). However, there was no obvious 
correlation between the HMF selectivity and solvent properties, such as 
dielectric constant or donor number. 

Next, fructose was used as a reactant in [C4C1im]Cl (Fig. 6). Three 
solvents, DMA, 2-butanol, and p-dioxane, were selected for comparison 
with [C4C1im]Cl. Without added catalyst (blank), HMF selectivity was 
47% at 96% fructose conversion in [C4C1im]Cl. The other solvents did 
not yield HMF and showed < 20% fructose conversion. As expected, 
added 14%PTA⊂MIL-101(Al)–NH2 catalyst improved the HMF selec
tivity in all solvents; more specifically, HMF selectivity in [C4C1im]Cl 
was 89% at 94% fructose conversion, two times greater HMF selectivity 
compared with a reaction without added catalyst. Although added 14% 

PTA⊂MIL-101(Al)–NH2 catalyst improved the fructose conversion in 
DMA, 2-butanol, and p-dioxane from < 20% to greater than 60%, the 
HMF selectivity in these three solvents was low (< 22%). These results 
suggested that [C4C1im]Cl can act as both acid catalyst [96,97] and 
solvent in fructose dehydration reaction. Moreover, the 14%PTA⊂MIL- 
101(Al)–NH2 enhanced HMF selectivity from fructose dehydration. 

Next, HMF was used as a reactant in these four solvents to investigate 
the HMF stability (Fig. 7). Without any catalyst (blank), HMF conversion 
was 11% in [C4C1im]Cl, and conversion increased slightly in other sol
vents. There were no identifiable products, which suggested the HMF 
was likely degraded into humin [98,99]. The added 14%PTA⊂MIL-101 
(Al)–NH2 catalyst enhanced HMF conversion to 15% in [C4C1im]Cl. The 
presence of 14%PTA⊂MIL-101(Al)–NH2 catalyst in other solvents 
improved the HMF conversion more than in [C4C1im]Cl. These results 
suggested that (1) HMF was not stable in these solvents and (2) although 
the 14%PTA⊂MIL-101(Al)–NH2 catalyst improved glucose/fructose 

Fig. 4. HMF selectivity of encapsulated PTA⊂MIL-101(Al)–NH2 catalysts at similar glucose conversions. Reaction condition: glucose:Al molar ratio = 25:1, 50 mg 
glucose, 1 g [C4C1im]Cl, 120 ◦C, 2 h. Numbers in the bar indicates wt.% of encapsulated PTA in PTA⊂MIL-101(Al)–NH2. 

Fig. 5. Solvent effect on glucose conversion and HMF selectivity (A) and comparison of conversion and selectivity in selected solvents (B) by 14%PTA⊂MIL-101(Al)– 
NH2 catalyst. Reaction condition: glucose:Al molar ratio = 25:1, 50 mg glucose, 1 g solvent, 120 ◦C, 2 h. 
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dehydration to HMF, the catalyst facilitated HMF conversion to humin. 
Thus, to minimize HMF degradation and maintain the high HMF yield, a 
reactive HMF extraction process should be considered [100]. 

3.5. Stability of HMF in the catalytic system and [C4C1im]Cl 

To maintain the high HMF selectivity in the reaction, it was impor
tant to determine the stability of the HMF under the reaction condition. 
Thus, HMF was heated in the same experimental condition that was used 
for glucose dehydration (120 ◦C) in [C4C1im]Cl solvent and catalysts. 
Without catalysts (blank), HMF degradation was ~ 11% after 6 h 
(Fig. 8). Levulinic acid and formic acid were not observed. These results 
suggested that [C4C1im]Cl was not able to rehydrate HMF. With added 
encapsulated 8% and 14%PTA⊂Al-MOF catalysts, a slight increase in 
HMF conversion was observed, which reached ~ 18% after 6 h. With 
PTA alone, the HMF conversion rate was 41%, greater than that of 
conversion in the presence of encapsulated 8% and 14%PTA⊂Al-MOF 
catalysts and reaching 19% and 21% after 6 h, respectively. 

Next, the physical mixture of PTA and 8%PTA⊂MIL-101(Al)–NH2 
catalyst was evaluated to check the HMF stability. The amount of PTA in 
the physical mixture of PTA and 8%PTA⊂Al-MOF catalyst was main
tained at the same level as for the encapsulated 14%PTA⊂Al-MOF 
catalyst. As expected, the physical mixture increased HMF conversion by 
34% at 6 h reaction time compared with 21% HMF conversion by 14% 
PTA⊂Al-MOF catalyst. These results demonstrated that PTA in the bulk 
solution degraded the HMF and decreased the HMF selectivity, similar to 
a finding of Zhang et al. [52]. The encapsulation of PTA in the pores of 
Al-MOF catalyst minimized PTA leaching into the solvent and limited 
conversion of HMF, which, in turn, maintained the HMF selectivity. 

3.6. Reuse of encapsulated PTA⊂MIL-101(Al)–NH2 for glucose 
dehydration 

To determine the ability to reuse the encapsulated PTA⊂Al-MOF 
catalyst, the spent catalyst was recovered by centrifugation, washed 

Fig. 6. Solvent effect on fructose conversion to HMF (A) without added catalyst, and (B) catalytic performance of encapsulated 14%PTA⊂MIL-101(Al)–NH2. Re
action condition: fructose:Al molar ratio = 25:1, 50 mg fructose, 1 g solvent, 120 ◦C, 2 h. 

Fig. 7. HMF conversion in different solvents with/without 14%PTA⊂MIL-101 
(Al)–NH2. Reaction condition: HMF:Al molar ratio = 25:1, 50 mg HMF, 1 g 
solvent, 120 ◦C, 2 h. 

Fig. 8. HMF conversion by encapsulated PTA⊂MIL-101(Al)–NH2. Reaction 
condition: 50 mg HMF, 30 mg catalyst, 1 g [C4C1im]Cl, 120 ◦C. Phospho
tungstic acid loading = 14 wt.% in PTA alone (green) and physical mix between 
8%PTA⊂MIL-101(Al)–NH2 + 6%PTA (red) to match the PTA loading in 14% 
PTA⊂Al-MOF (dark blue). 

M.S. Rahaman et al.                                                                                                                                                                                                                           



Fuel 310 (2022) 122459

9

with water, and dried in a vacuum oven at 130 ◦C to remove moisture, 
residual products, intermediates, and unreacted glucose. Then, the 
catalyst was reused four times. The 14%PTA⊂Al-MOF was chosen 
because it had the greatest HMF selectivity. The 14%PTA⊂Al-MOF 
catalyst maintained its catalytic performance with HMF selectivity of ~ 
55% at 40% glucose conversion after the 4th cycle, < 10% decrease in 
both glucose conversion and HMF selectivity compared with fresh 
catalyst (Fig. 9). In all cycles, the selectivity to HMF was between 55 and 
62%. Next, ICP-EOS was used to measure the Tungsten (W) content in 
the spent catalysts. Only a slight W loss (< 3 wt.%) in the spent catalysts 
was observed after four recycles, which indicated that little to no PTA 
leached from the 14%PTA⊂Al-MOF catalyst. 

3.7. Proposed chemical pathway for glucose dehydration to HMF by 
PTA⊂MIL-101(Al)–NH2 

On the basis of the foregoing findings, Scheme 2 shows a proposed 
mechanism for glucose dehydration to HMF by PTA⊂MIL-101(Al)–NH2 
catalysts. The reaction proceeds by the synergy between Lewis-Brønsted 
acid sites: (1) glucose isomerization to fructose by the Lewis acid of MIL- 
101(Al)–NH2, and (2) dehydration of resulting fructose to HMF by the 
Brønsted acid of PTA and/or MIL-101(Al)–NH2. 

The glucose isomerization to fructose by Lewis acid sites consists of a 
sequence of ring opening, deprotonation, isomerization, protonation, 
and ring closure processes as shown by Hensen et al. [101-103]. We 
postulated that glucose initially binds to the Al active site imbedded in 
the MIL-101 framework via its ring oxygen atom and followed by the 
ring opening process to form the acyclic glucose. Subsequently, the 
deprotonation of the hydroxyl group at C2 occurred by the metal-oxo 
clusters. Next, the aldose-ketose isomerization induces the hydride 
shift from the C2 to C1 carbon atom. The reaction undergoes a ring- 
closure reaction yielding anionic fructofuranose bound to Al site. 
Finally, the terminal oxygen anionic fructofuranose is protonated to 
generate fructose. 

The fructose undergoes dehydration by Brønsted acid sites to pro
duce HMF by dehydration and tautomerization. First, the hydroxyl 
group of the fructose at the alpha position is protonated by acidic pro
tons of Brønsted acid catalysts, which resulted in the formation of water. 
Next, the cyclic enol intermediate is formed and subsequently tauto
merized to 2,5-anhydro-D-mannose [104-106]. Then, the reaction pro
ceeds by two sequential dehydrations to form HMF. 

4. Discussion 

A major challenge in selective glucose conversion to HMF is the 
design of catalysts that possess Lewis and Bronsted acid sites that can act 
cooperatively [15,107,108]. Here, the effect of PTA encapsulation in 
PTA⊂MIL-101(Al)–NH2 catalysts (PTA⊂Al-MOF) on glucose conversion 
to HMF was investigated. The synergy between encapsulated PTA and 
Al-MOFs enabled the high HMF selectivity. Moreover, the results 
demonstrated that the encapsulation of PTA in MIL-101(Al)–NH2 cata
lysts minimized PTA leaching into the bulk solution, thereby preventing 
degradation of the HMF product. 

The most significant finding was that the HMF selectivity strongly 
depended on the location of the PTA. Encapsulation of PTA in MIL-101 
(Al)–NH2 pores provided two benefits. First, the close proximity be
tween the Lewis acid sites of the Al-MOF and the Brønsted acidic PTA 
promoted HMF formation. The fructose formed from glucose isomeri
zation by Lewis acid (MIL-101(Al)–NH2) was dehydrated to HMF by the 
encapsulated PTA catalyst. Tangsermvit et al. showed that the proximity 
between Lewis and Brønsted acid sites was important in achieving a high 
HMF yield [109], a result that agrees with our findings. Second, 
encapsulated PTA catalysts minimized PTA leaching into the bulk so
lution and, consequently, prevented HMF degradation. Although 
Brønsted acids catalyze fructose dehydration to HMF, they also catalyze 
undesired HMF rehydration to levulinic acid [110] and/or degradation 
to humin [11]. The MIL-101 structure of the Al-MOF possesses both 
mesoporous windows (29–34 Å) and microporous windows, the latter 
corresponding to large hexagonal pores (15–16 Å), and somewhat 
smaller pentagonal pores (~12 Å) [111-113]. Keggin-type hetero
polyacids, ~13–14 Å in size [53], are larger than the pentagonal pores in 
MIL-101, thereby preventing heteropolyacids from leaching out and 
causing side reactions (rehydration and/or humin formation). These 
results explained the retention of HMF selectivity and the ability to 
recycle the PTA⊂MIL-101(Al)–NH2 catalyst. Hence, encapsulated 
Brønsted acidic PTA in the pores of MIL-101(Al)–NH2 not only provided 
Brønsted acidity for fructose dehydration but also prevented PTA 
leaching into the bulk solution, that otherwise had the potential to 
degrade HMF. 

Another significant finding was the discovery of the high selectivity 
of PTA⊂Al-MOF for glucose dehydration. Many investigators used solid 
Lewis acid catalysts (Sn-containing β-zeolites [20] and Nb2O5 [18]) with 
homogeneous catalysts such as HCl to maximize HMF selectivity 
(Table S3). Their results suggested that the cooperative effect between 
Lewis acid and Brønsted acid species was critical in maximizing HMF 
selectivity in glucose dehydration. Qu et al. impregnated SO4

2- on ZrO2 
by H2SO4 acid [114]. Although the SO4

2-/ZrO2 in biphasic THF/H2O 
system reached a high HMF selectivity of 67% at 93% glucose conver
sion, both HMF selectivity and glucose conversion dropped ~ 10% after 
the 4th catalyst recycling due to leaching of SO4

2- [114]. The ability to 
create the solid bifunctional Lewis-Bronsted catalysts will enhance the 
commercial feasibility of HMF production. Zhang et al. encapsulated 
PTA in MIL-101(Cr) to produce the bifunctional acid catalysts with PTA 
as a Brønsted acid and MIL-101(Cr) as a Lewis acid [52]. The PTA⊂MIL- 
101(Cr) catalysts were selective toward HMF in fructose dehydration. 
However, they were not selective toward HMF in glucose dehydration 
and gave only 10% HMF selectivity at 21% glucose conversion at 100 ◦C 
after 3 h. Compared with MOF-derived catalysts for glucose dehydra
tion, the PTA⊂Al-MOF catalysts described in this report were superior to 
other MOF-derived catalysts in terms of HMF selectivity (Table S3). 

These findings demonstrate that PTA⊂Al-MOF catalyst was a selec
tive and recyclable catalyst for glucose dehydration to HMF. The 
PTA⊂MIL-101(Al)–NH2 catalyst was easy to synthesize compared with 
other solid acid catalysts for selective glucose conversion to HMF, such 
as modified β-zeolites [115]. Moreover, the ability to control the ratio of 
numbers of Brønsted acid sites to Lewis acid sites in PTA⊂Al-MOF cat
alysts provides opportunities to use the catalysts in various organic re
actions, such as esterification [116], alkylation [117], and benzylation 

Fig. 9. Reuse of 14%PTA⊂MIL-101(Al)–NH2 for glucose dehydration. Reaction 
condition: glucose: Al molar ratio = 25:1, 1 g [C4C1im]Cl, 120 ◦C, 2 h. Tungsten 
content (%W) indicates the W content in the spent catalyst. 
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[118]. 
Although PTA⊂Al-MOF catalyst is promising for selective glucose 

conversion to HMF, the interactions between the framework, metal 
nodes, and PTA (acidic protons) that affect the acid properties and 
catalytic performance has not been extensively investigated. Juan- 
Alcañiz et al. reported the partial W substitution by Cr3+ of MIL-101(Cr) 
at high temperatures [53]. The W-substituted heteropolyacids and/or 
the formation of W-Al complex metal nodes might be the active sites for 
this reaction. Additional studies should identify the interaction between 
W in PTA and Al in Al-MOF by 27Al Magic Angle Spin (MAS) Nuclear 
Magnetic Resonance (NMR). The knowledge will help in designing se
lective catalysts and systems for glucose dehydration. 

5. Conclusion 

Phosphotungstic acid encapsulated MIL-101(Al)–NH2 catalyst 
(PTA⊂MIL-101(Al)–NH2) was developed for selective glucose conver
sion to HMF. The encapsulation of Brønsted acidic phosphotungstic acid 
in the pores of MIL-101(Al)–NH2 provided the proximity between 
Brønsted acid sites and Lewis acid sites of MIL-101(Al)–NH2 for the 
efficient cascade of glucose isomerization and fructose dehydration. The 
synergistic effect of Brønsted and Lewis acid sites in the phosphotungstic 
acid encapsulated MIL-101(Al)–NH2 catalyst is the key contributor to 
the high HMF selectivity and glucose conversion; this synergy cannot 
occur if the agents are introduced separately. Moreover, the encapsu
lated phosphotungstic acid was stable in the pores of MIL-101(Al)–NH2, 
which minimized leaching of PTA into the bulk solution and reaction 
with the HMF to generate undesired products. As a result, the encap
sulated PTA⊂MIL-101(Al)–NH2 catalyst maintained its catalytic per
formance after recycling four times. These results underscore the 
importance of phosphotungstic acid encapsulation to provide the 
cooperative effect between Brønsted and Lewis acidic sites for maxi
mizing the HMF formation and minimizing subsequent HMF conver
sion/degradation. This encapsulated metal–organic framework catalyst 
should be applicable to other acid-catalyzed biomass transformations. 
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