Extended X-ray absorption fine structure analysis of Ni-P and Fe-P amorphous alloys at the phosphorus K-edge

K. MONDAL, N. SATHITSUKSANOH, S. B. LALVANI*

Mechanical Engineering and Energy Processes, Southern Illinois University, Carbondale, IL 62901-6603, USA E-mail: lalvani@engr.siu.edu

Amorphous alloys have unusual physical properties, such as excellent corrosion resistance, owing to their short-range order and lack of grain boundaries. The presence of metalloids, such as P, B, C, Si etc., lead to the formation of amorphous or glassy structure. In a previous study, Lalvani et al. [1] have studied the structure of the alloys by X-ray absorption near edge structure (XANES) spectroscopic analysis. The energy levels used in the study of the structures were quite low (less than 2200 eV) which enabled the investigation of P K-edge. Their research indicated both a metalloid P character in amorphous Ni-P and the transfer of charge from Ni to P-p orbitals in the material. The also show that the scratching of the sample leads to a p^{5+} -oxidized feature. The Fe-P sample appeared to indicate a stronger (relative to the Ni-P sample) transition to metal-P hybridization.

Lalvani *et al.* [2] also conducted extended X-ray absorption fine structure (EXAFS) investigations at the Ni K-edge and Fe K-edge of Ni-P and Fe-P samples. Their investigations showed the existence of short range order in both samples with major peaks of the Fourier transformed spectrum at about 2 Å. The estimated bond lengths were about 2–3 Å. The following is an EXAFS investigation of Ni-P and Fe-P at the P K-edge.

Fe P and Ni-P samples were produced by electrodeposition. Electrodeposition of Fe-P was carried out using a bath consisting of 200 g/L FeSO₄ · 7H₂O, 7 g/L sodium hypophosphite, 8 g/L glycine and 0.5 g/L of oxalic acid. A plating solution consisting of 150 g/L NiSO₄ · 6H₂O, 45 g/L NiCl · 6H₂O, 40 g/L phosphoric acid and 40 g/L phosphorus acid was used for Ni-P electrodeposition. The pH of the solutions for Fe-P and Ni-P electrodeposition were kept at 1.0 and 1.4, respectively. The substrate used was a 25 μ m thick copper foil. Significant agitation was provided during electrodeposition with a magnetic stirrer. The anode and cathode were placed parallel to each other at a distance of 4 cm. The current densities and temperature conditions were: 0.05–0.23 A/cm² and 50–65 °C for Ni-P and 0.02–0.1 A/cm² and 40–50 °C for Fe-P deposition. The elemental composition of the deposits was found by atomic absorption spectroscopy. Additional experimental conditions are also provided elsewhere [3, 4].

Figure 1 EXAFS spectrum for Fe-P sample at the P K-edge.

*Author to whom all correspondence should be addressed.

Figure 2 EXAFS spectrum for Ni-P sample at the P K-edge.

Normalized EXAFS functions $\chi(k)$ were obtained using the standard procedure [5]. Absorption above the edge was fitted using the two-cubic spline. The EXAFS spectra (absorption coefficient vs. energy) are plotted for both, Fe-P and Ni-P samples in Figs. 1 and 2. Peaks were observed at 2.149, 2.154, 2.157 and 2.162 keV in the EXAFS spectrum for the Fe-P sample (Fig. 1). For the Ni-P sample (Fig. 2), a minor peak at the energy level of about 2.149 keV and a major peak at 2.157 keV followed by two minor peaks at 2.162 keV and 2.169 keV are observed. The Fourier transform of $\chi(k)$ performed with a k^2 weight and a Hanning window function is presented in Figs. 3 and 4. In order to remove the noise from the experimental data, a back-Fourier transform was performed on the main peak, the range of which is shown in Figs. 3 and 4. The resulting filtered Fourier transformations of $k^2 \chi(k)$ were then compared to the calculations from the computer code FEFF 7 [6]. P-metal pairs were only considered due to the fact that no metalloid—metalloid nearest neighbors have been reported in similar alloys [7]. Using single shell data analysis, the bond length of the P-Fe sample was estimated to be about 2.56 \pm 0.00891 Å and that of P-Ni to be 2.69 \pm 0.00254 Å. The coordination number was

Figure 3 Fourier transform of EXAFS spectrum of Fe-P at the P K-edge.

Figure 4 Fourier transform of EXAFS spectrum of Ni-P at the P K-edge.

estimated to be about 3.53 for the Fe-P sample and 6.202 for the Ni-P sample while the disorder parameter values were $0.009 \pm 7.84 \times 10^{-6}$ and $0.07 \pm 7.39 \times 10^{-5}$ for Fe-P and Ni-P, respectively. Due to the extremely restricted *k* range the coordination number has a large error associated with it. The Fourier transformations of the EXAFS spectrum for the Fe-P (Fig. 3) shows a major peak at 2.3 Å while that of the EXAFS spectrum for the Ni-P sample (Fig. 4) shows a major peak at approximately 3.5 Å. This observation is significant in that it shows no long range order.

Acknowledgments

Support for this research was funded through Southern Illinois University, Carbondale, provided by CARS, Argonne National Laboratory, Materials Technology Center of SIU-Carbondale and National Synchrotron Light Source at Brookhaven National Laboratories.

References

- 1. S. B. LALVANI and M. CROFT, J. Mater. Sci. Lett. 18 (1999) 1281.
- S. B. LALVANI, K MONDAL, N. SATHITSUKSANOH, T. WILTOWSKI and Y. XIAO, *ibid.* 20 (2001) 1097.
- 3. J. W. KANG, S. B. LALVANI and C. A. MELENDRES, J. Appl. Electrochem. 25 (1995) 376.
- 4. S. B. LALVANI and J. C. KANG, *J. Mater. Sci. Lett.* **11** (1992) 835.
- 5. B. LENGELER and P. E. EISENBERGER, *Phys. Rev.* B 21 (1980), 4507.
- 6. A. L. ANKUDINOV and J. J. REHR, *ibid.* 56 (1997) R1712.
- 7. J. WONG and H. H. LEIBERMANN, *ibid.* **29** (1984) 846.

Received 12 July and accepted 24 September 2002